Meiosis Notes

Foldable

- You need 6 pieces of printer paper
- Stagger the pages about 1 cm (width of pinky finger) DO NOT make the tabs too large!!!!!
- Fold the stack of pages to make the foldable as instructed by your teacher and staple
- On the cover write "MEIOSIS"
- On the back put your Name and Period

Foldable Layout

- Label the tabs of the foldable according to the diagram to the right
- Use some way (choice is yours) to show which tabs make up Meiosis I and which tabs make up Meiosis II

Note Taking Key

- Text in black will be copied into your flipbook
- Vocabulary words will be like this \rightarrow Meiosis Highlight these in your notes when the text is black, you will define these in the back of your foldable
- Interesting facts will have slide Headings and text in blue like this \rightarrow Mitosis vs Meiosis
You do not have to copy blue text into your flipbook unless you want to (come in after class or get them online)

Mitosis Diagram

There is not room for you to draw this diagram, but know what it means

Meiosis vs Mitosis

Meiosis creates 4 genetically different gametes (haploid)

Mitosis creates 2
identical daughter cells (diploid)

Meiosis Introduction (1st tab upper half)

- Process of reduction division
- Purpose: Produces gametes (sex cells) - sperm \& egg
- Meiosis is NOT a cycle like mitosis.

Diploid vs. Haploid

Diploid - a cell that contains homologous chromosomes (one from each parent)
represented by the symbol 2 N

- Found in somatic or body cells (ex. Skin, digestive tract)
- Example: Humans $\rightarrow 2 \mathrm{~N}=\underline{46}$

Haploid - a cell that contains only a single set of chromosomes (one from either parent, not both);
represented by the symbol $\underline{\mathrm{N}}$ or $\underline{1 \mathrm{~N}}$

- Found in gametes or sex cells - sperm \& egg
- Example: Humans $\rightarrow \mathrm{N}=\underline{23}$

Meiosis Introduction (1 ${ }^{\text {st }}$ tab middle) Chromosome Numbers

- Somatic cells: (diploid $=2 \mathrm{~N}=46$ chromosomes in humans)
- Gametes: (haploid $=\mathrm{N}=23$ chromosomes in humans)

Chromosome Numbers of Some Common Organisms

Organism	Body Cell (2n)	Gamete (n)
Human	46	23
Garden Pea	14	7
Fruit fly	8	4
Tomato	24	12
Dog	78	39
Chimpanzee	48	24
Leopard frog	26	13
Corn	20	10
Apple	34	17
Indian fern	1260	630

Meiosis Introduction (1st tab middle)

- Similar to Mitosis' IPMATC
- Meiosis involves two distinct divisions, called Meiosis I and Meiosis II
- By the end of Meiosis II, the 1 diploid cell that entered meiosis has become 4 haploid cells

Meiosis Introduction (1st tab bottom half)

- Draw the general cell division stages and label them
- Do NOT worry about drawing the chromosomes at this time.

Interphase (2 ${ }^{\text {nd }}$ tab)

- Stage between divisions
- Contains: centrioles and chromatin
- Made of stages:

G1 - basic cell growth
S - replication and repair of DNA G2 - final preparation for cell division

Draw and label this picture in your flipbook pook

Nucleus (with chromatin)

Meiosis I

MEIOSISI
Interphase I
Telophase I

Prophase I (3 ${ }^{\text {rd }}$ tab - upper half of page)

- Corresponding homologous

Homologous Pairs (Humans have 23 pairs making 46 total chromosomes)

Prophase I (3 ${ }^{\text {rd }}$ tab lower half of page)

- Crossing over happens when parts of the homologues chromosomes switch places after overlapping
Exchange of parts of non-sister chromatids.

Draw this diagram and use 2 different colors to show the exchanged genetic material

How can siblings look alike but not exactly the same if they come from the same parents?

Importance of crossing over

- The gene combinations that a person gets from his or her parents will be different, to varying degrees, than the combination a sibling may get.
- Crossing over increases genetic diversity
Add this statement to the Prophase 1 page on the $3^{\text {rd }}$ tab

More sibling similarities

Metaphase I
 (4 $4^{\text {th }}$ tab)

- The centrioles send out
spindle fibers to line up
homologous pairs in the middle of cell along the metaphase plate

Anaphase I

- The centrioles use the spindle fibers to separate the homologous pairs
- Each homologous chromosome is pulled to the opposite pole of the cell

Anaphase I

($5^{\text {th }}$ tab upper half)

- If the centrioles do not properly attach the spindle fibers to the homologous chromosome before they start to pull, then a Nondisjunction will occur

Draw and label this picture in your flipbook

Homologous Chromosomes

Anaphase I
 (5 ${ }^{\text {th }}$ tab lower half) Nondisjunction in Meiosis I

- In the first picture you see how the lower red chromosome is being pulled to the wrong side
- In the second picture it caused one pole of the cell to have an extra chromosome
- A Nondisjunction causes the gametes to have the wrong amount of chromosomes

Draw this picture in your flipbook nondisjunction
in meiosis I and use different colors to show the different chromosomes

Telophase I \& Cytokinesis

(6 ${ }^{\text {th }} \mathrm{tab}$)

- Telophase I - the cell creates a temporary nucleus around the two homologous chromosome sets
- Cytokinesis - the cell divides into two cells

Prophase II ($7^{\text {th }}$ tab)

- The next slide give information about starting Meiosis II.
- Write this information on the Prophase II (7 ${ }^{\text {th }}$ tab upper half) and draw a box around it.
- You do not have to draw the picture for all of Meiosis II because you'll draw each stage individually.
- The lower half of the $7^{\text {th }}$ tab will be Prophase II. Describe and diagram that slide

Meiosis II
 ($7^{\text {th }}$ tab upper half)

- The two new cells produced by meiosis I now enter a second meiotic division
- The cells do NOT replicate DNA resulting in four haploid cells
- Each cell has half of the original DNA
- $2 \mathrm{~N} \div 2=\mathrm{N}$

Prophase II

($7^{\text {th }}$ tab lower half)

- Each of the Meiosis II stages are running in 2 cells at the same time.
- Similar to Prophase of Mitosis
- Centrioles attach spindle fibers to the chromosomes
 this picture in your

Metaphase II

 ($8^{\text {th }}$ tab)- Similar to Metaphase of Mitosis
- Centrioles use spindle fibers to line up the chromosomes in the middle at the metaphase plate

Anaphase II

(9 th tab upper half)

- The centrioles use the spindle fibers to separate the chromosomes into individual chromatids

Anaphase II

- If the centrioles do not properly attach the spindle fibers to the chromosome before they start to pull, then a Nondisjunction will
(9 ${ }^{\text {th }}$ tab upper half)
 flipbook

Anaphase II
 (9th tab lower half) Nondisjunction in Meiosis II

- In the third picture you see how the lower red chromosome only has one spindle fiber attached
- In the fourth picture it caused one gamete to have an extra chromatid and the other gamete to be missing one.
- A Nondisjunction causes the gametes to have the wrong amount of chromosomes

Telophase II \& Cytokinesis

($10^{\text {th }}$ tab)

- Telophase II - the cells creates a permanent nucleus around the two haploid chromosome sets

Draw and labe this picture in your flipbook

- Cytokinesis - the cells divides into four haploid daughter cells

Gamete (Sex Cell) Formation

- In male animals (including humans), the haploid gametes produced by meiosis are called sperm
- 4 sperm cells are produced from one meiotic division

Gamete (Sex Cell) Formation

- In female animals (including humans), the haploid gametes produced by meiosis are called eggs
- The cell divisions at the end of meiosis I \& II are uneven, so that 1 large egg is produced along with 3 other cells, called polar
 bodies, which are discarded and not involved in reproduction

Meiosis Animation

- The following slide shows a simple animation using a cell with 2 pairs of homologous chromosomes going through meiosis.

Meiosis Animation

Meiosis I Animation

http://wps.prenhall.com/wps/media/objects/4 87/498728/CDA9 1/CDA9 1b/CDA9 1b.ht m

Meiosis II Animation
http://wps.prenhall.com/wps/media/objects/4 87/498728/CDA9 1/CDA9 1c/CDA9 1c.ht m

Vocaulary \& Useful Info
 (11 ${ }^{\text {th }}$ tab)

- This tab will contain vocabulary, a table and some useful facts
- Set up the page like the diagram to the right
- The dotted blue line is the fold in the middle of the page

Vocabulary

(11 ${ }^{\text {th }}$ tab upper half)

Reduction division - When the number of chromosomes per cell is cut in half

Haploid - A cell that has half the amount of chromosomes.
A cell that is " N " for chromosome amount

Diploid - A cell that has twice the amount of chromosome.
A cell that is " 2 N " for chromosome amount

Gamete - the haploid "sex" cells (in animals they are sperm and egg cells)

Somatic Cell - all diploid cells (body cells) that are not gametes

Zygote - fertilized egg cell formed form the joining of the gametes (sperm and egg)

Vocabulary

(11 ${ }^{\text {th }}$ tab upper half)

Centrioles - Organelles in the cell that help to move chromosomes during cell division

Chromatin - What you call the DNA during Interphase, Very easy to access the genes for transcription and translation to create proteins

Chromosome - What you call the DNA during the actual cell division stages (Pro-, Meta-, Ana-, and Telophase).

Condensed/packed DNA for easy movement during cell division

Chromatid - One of the "arms" of a chromosome ' X '. Each chromatid is identical to the other because it is created by replication.

A chromosome is made of two Sister Chromatids.

Spindle Fiber - fibers created and used by the centrioles to move the chromosomes around during the division stages.

Vocabulary (11 th tab upper half)

Homologous Chromosomes - the same numbered chromosome that pair up from mother and father (ex: mom's chromosome 1 and dad's chromosome 1)

Crossing Over - A kind of chromosomal mutation that happens in Prophase 1 of meiosis.

Homologous chromosomes overlap and exchange pieces of the chromosome which caused genetic variability.

Nondisjuction - Happens in either Anaphase 1 or Anaphase 2 of meiosis when one centriole does not connect to the chromosome with a spindle fiber. Causes the gametes to have extra or missing chromosomes.

Fertilization - The process of making a zygote. When egg and sperm cells fuse and combine their genetic information (DNA)

Table (11 th tab lower half)

- Set up
your
table as
shown

	Mitosis	Meiosis
Number of Starting cells		
Number of ending cells		
Number of Human Chromosomes		
Genetic Make up of cells		
Type of cells		

Comparing Mitosis \& Meiosis

* Number of cells at beginning of process
- Mitosis = 1 Diploid cell
- Meiosis = 1 Diploid Cell
* Number of cells at the end of the process
- Mitosis = 2 Diploid Cells
- Meiosis = 4 Haploid Cells

Comparing Mitosis \& Meiosis

* Number of chromosomes at the START
- Mitosis = 46 (Diploid, "two sets")
- Meiosis $=46$
* Number of chromosomes at the END
- Mitosis $=46$
- Meiosis = 23 (Haploid, "one set")

Comparing Mitosis \& Meiosis

Is the genetic make-up of the daughter cells UNIQUE or IDENTICAL?

- Mitosis produces 2 IDENTICAL CELLS
- Meiosis produces 4 UNIQUE CELLS

Comparing Mitosis \& Meiosis

- Type of cell in the human body that can undergo each phase
*Mitosis produces Somatic BODY cells (skin)
*Meiosis produces Gamete SEX cells (sperm or eggs)

Interesting Facts ($11^{\text {th }}$ tab bottom)

- Females produce all their eggs at once, and store them at a very early age (They release one each month during mentration)

Why is this not necessarily a good thing?

- Males make sperm constantly from puberty until they die.

